在本文中,我们研究了推断空间变化的高斯马尔可夫随机场(SV-GMRF)的问题,其中的目标是学习代表基因之间网络关系的稀疏,特定于上下文的GMRF网络。 SV-GMRF的一个重要应用是推断来自空间分辨转录组学数据集的基因调节网络。当前有关SV-GMRF推断的工作基于正则最大似然估计(MLE),并且由于其高度非线性的性质而受到压倒性的计算成本。为了减轻这一挑战,我们提出了一个简单有效的优化问题,代替了配备强大的统计和计算保证的MLE。我们提出的优化问题在实践中非常有效:我们可以在不到2分钟的时间内解决具有超过200万变量的SV-GMRF的实例。我们将开发的框架应用于研究胶质母细胞瘤中的基因调节网络如何在组织内部空间重新连接,并确定转录因子Hes4和核糖体蛋白的显着活性是表征肿瘤血管周期壁iche中基因表达网络的特征抗性干细胞。
translated by 谷歌翻译
背景:精确诊断颅底肿瘤对于提供个性化的手术治疗策略至关重要。由于肿瘤多样性和缺乏术中病理资源,术中诊断可能具有挑战性。目的:开发独立且平行的术中病理学工作流程,可以使用无标签的光学成像和人工智能提供快速准确的颅底肿瘤诊断。方法:我们使用了基于光纤激光,无标签,非消费性,高分辨率显微镜方法($ <$ <$ <$ <$ 60秒,每1 $ \ times $ 1 mm $ $^\ text {2} $),称为刺激的拉曼组织学(SRH),以对颅底肿瘤患者的连续多中心队列进行成像。然后,使用三种表示学习策略:跨渗透性,自我监督的对比度学习和监督对比度学习,使用SRH图像来训练卷积神经网络(CNN)模型。我们训练有素的CNN模型在持有的多中心SRH数据集上进行了测试。结果:SRH能够成像良性和恶性颅底肿瘤的诊断特征。在三种表示策略中,有监督的对比度学习最有效地学习了每种颅底肿瘤类型的独特和诊断SRH图像特征。在我们的多中心测试集中,跨渗透性达到了91.5%的总体诊断准确性,自我监督的对比度学习为83.9%,并且有监督的对比度学习为96.6%。我们训练有素的模型能够鉴定出肿瘤正常的边缘,并检测整个SRH图像中微观肿瘤浸润的区域。结论:具有训练有素的人工智能模型的SRH可以对颅底肿瘤标本进行快速准确的术中分析,以告知手术决策。
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译
We propose an ensemble approach to predict the labels in linear programming word problems. The entity identification and the meaning representation are two types of tasks to be solved in the NL4Opt competition. We propose the ensembleCRF method to identify the named entities for the first task. We found that single models didn't improve for the given task in our analysis. A set of prediction models predict the entities. The generated results are combined to form a consensus result in the ensembleCRF method. We present an ensemble text generator to produce the representation sentences for the second task. We thought of dividing the problem into multiple small tasks due to the overflow in the output. A single model generates different representations based on the prompt. All the generated text is combined to form an ensemble and produce a mathematical meaning of a linear programming problem.
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
This paper deals with the problem of statistical and system heterogeneity in a cross-silo Federated Learning (FL) framework where there exist a limited number of Consumer Internet of Things (CIoT) devices in a smart building. We propose a novel Graph Signal Processing (GSP)-inspired aggregation rule based on graph filtering dubbed ``G-Fedfilt''. The proposed aggregator enables a structured flow of information based on the graph's topology. This behavior allows capturing the interconnection of CIoT devices and training domain-specific models. The embedded graph filter is equipped with a tunable parameter which enables a continuous trade-off between domain-agnostic and domain-specific FL. In the case of domain-agnostic, it forces G-Fedfilt to act similar to the conventional Federated Averaging (FedAvg) aggregation rule. The proposed G-Fedfilt also enables an intrinsic smooth clustering based on the graph connectivity without explicitly specified which further boosts the personalization of the models in the framework. In addition, the proposed scheme enjoys a communication-efficient time-scheduling to alleviate the system heterogeneity. This is accomplished by adaptively adjusting the amount of training data samples and sparsity of the models' gradients to reduce communication desynchronization and latency. Simulation results show that the proposed G-Fedfilt achieves up to $3.99\% $ better classification accuracy than the conventional FedAvg when concerning model personalization on the statistically heterogeneous local datasets, while it is capable of yielding up to $2.41\%$ higher accuracy than FedAvg in the case of testing the generalization of the models.
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译
We investigate data-driven texture modeling via analysis and synthesis with generative adversarial networks. For network training and testing, we have compiled a diverse set of spatially homogeneous textures, ranging from stochastic to regular. We adopt StyleGAN3 for synthesis and demonstrate that it produces diverse textures beyond those represented in the training data. For texture analysis, we propose GAN inversion using a novel latent domain reconstruction consistency criterion for synthesized textures, and iterative refinement with Gramian loss for real textures. We propose perceptual procedures for evaluating network capabilities, exploring the global and local behavior of latent space trajectories, and comparing with existing texture analysis-synthesis techniques.
translated by 谷歌翻译
The COVID-19 pandemic created a deluge of questionable and contradictory scientific claims about drug efficacy -- an "infodemic" with lasting consequences for science and society. In this work, we argue that NLP models can help domain experts distill and understand the literature in this complex, high-stakes area. Our task is to automatically identify contradictory claims about COVID-19 drug efficacy. We frame this as a natural language inference problem and offer a new NLI dataset created by domain experts. The NLI framing allows us to create curricula combining existing datasets and our own. The resulting models are useful investigative tools. We provide a case study of how these models help a domain expert summarize and assess evidence concerning remdisivir and hydroxychloroquine.
translated by 谷歌翻译